Retrovirus molecular conjugates. A novel, high transduction efficiency, potentially safety-improved, gene transfer system.
نویسندگان
چکیده
Two significant barriers limit the use of amphotropic retrovirus for human gene transfer protocols: 1) low transduction efficiency in cells with low receptor expression and 2) safety concerns originating from the risk of formation and propagation of replication competent virus in vivo. In principle, if ecotropic retrovirus, which is incapable of infecting human cells, could be transiently modified to effectively transduce human cells, this safety risk could be alleviated. Here we demonstrate that formation of amphotropic retrovirus polylysine molecular conjugates (aMMLV-PL) enhanced gene transfer up to 10-fold in a variety of human cell lines over the equivalent of unconjugated vector (aMMLV). The polylysine modification and formation of ecotropic retrovirus molecular conjugates (eMMLV-PL) permitted effective and stable transduction of different human cell lines as well as primary human bone marrow stroma cells at frequencies of greater than 80%. It is conceivable that this novel ecotropic-based conjugate retrovirus vector could also potentially provide enhanced safety characteristics not only over amphotropic retrovirus vectors but also over genetically tropism-modified recombinant ecotropic vectors. In contrast to genetic modifications, physical or chemical modifications are not propagated. Thus, formation of replication competent eMMLV from conjugates would be self-limited and would not result in virus propagation in humans.
منابع مشابه
Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells
Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...
متن کاملGene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کاملGene therapy and bone marrow transplantation.
Retrovirus-mediated gene transfer into hematopoietic stem cells has been shown in mice, large animals, and humans. Transduction efficiency has been high in mice but has remained low in large animals and humans. Improved transduction efficiency into hematopoietic progenitor cells of large animals and humans has been achieved in vitro by enriching for CD34+ cells, adding growth factors to the tra...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملHigh-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes.
Peripheral blood lymphocytes (PBLs) are primary targets for gene therapy of inherited and acquired disorders of the immune system. We describe the development of an optimized transduction system that provides for high-efficiency retrovirus-mediated gene transfer into primary PBLs. This optimized transduction protocol combines centrifugation of the lymphocytes (1000 x g) at the inception of tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 27 شماره
صفحات -
تاریخ انتشار 2001